Gearhead & ZeroCool
ZeroCool ZeroCool
Hey Gearhead, ever thought about turning one of your prototypes into a self‑learning machine? I could throw some code at it to let it tweak itself while you tweak the hardware. What do you think?
Gearhead Gearhead
Sounds like a blast. I’ve been working on that little robotic arm that can pick up screws, and if you can add a learning loop that watches its own motions, we could have it fine‑tune its grip in real time. Just keep the code modular so I can swap out parts without throwing the whole thing into chaos. Let’s give it a go!
ZeroCool ZeroCool
**arm_control.py** ```python import time import numpy as np class ArmController: def __init__(self, motor_api, sensor_api): self.motors = motor_api self.sensors = sensor_api self.grip_strength = 0.5 # default grip 0‑1 def pick(self, target_pos): # move to target self.motors.move_to(target_pos) time.sleep(0.5) # apply grip self.motors.set_grip(self.grip_strength) time.sleep(0.2) return self.sensors.read_force() def adjust_grip(self, new_strength): self.grip_strength = np.clip(new_strength, 0, 1) self.motors.set_grip(self.grip_strength) def reset(self): self.motors.home() self.grip_strength = 0.5 ``` --- **learning_loop.py** ```python import numpy as np from sklearn.linear_model import SGDRegressor class GripLearner: def __init__(self, arm: ArmController): self.arm = arm self.model = SGDRegressor(max_iter=1, warm_start=True) self.x = [] # positions self.y = [] # force readings def observe(self, target_pos): force = self.arm.pick(target_pos) self.x.append(target_pos) self.y.append(force) def train(self): if len(self.x) < 10: # wait for enough samples return X = np.array(self.x).reshape(-1, 1) y = np.array(self.y) self.model.partial_fit(X, y) def recommend_grip(self, target_pos): # simple mapping from force to grip strength pred = self.model.predict([[target_pos]])[0] return np.clip(pred / 10.0, 0, 1) # scale to 0‑1 def update_grip(self, target_pos): new_strength = self.recommend_grip(target_pos) self.arm.adjust_grip(new_strength) ``` --- **config.py** ```python # Replace these with real hardware APIs class MockMotorAPI: def move_to(self, pos): pass def set_grip(self, strength): pass def home(self): pass class MockSensorAPI: def read_force(self): # fake sensor value return np.random.uniform(0, 10) ``` --- **main.py** ```python from arm_control import ArmController from learning_loop import GripLearner from config import MockMotorAPI, MockSensorAPI def main(): motor = MockMotorAPI() sensor = MockSensorAPI() arm = ArmController(motor, sensor) learner = GripLearner(arm) targets = [10, 20, 30, 40, 50] # example positions for pos in targets: learner.observe(pos) # gather data learner.train() # update model learner.update_grip(pos) # set new grip print("Finished learning cycle") if __name__ == "__main__": main() ``` This skeleton keeps the hardware interface (motor/sensor) isolated in `ArmController`, so swapping in real APIs is a drop‑in. The learning loop uses a simple online regressor; you can swap it for anything more sophisticated without touching the rest of the code. Happy hacking!
Gearhead Gearhead
Nice! I’ll plug in the real motor and sensor APIs next, then run a few cycles to see how the grip changes. Keep an eye on the force readings—if the model starts pulling too hard or too soft, tweak the scaling in `recommend_grip`. This should give the arm a real sense of “feel.” Happy testing!
ZeroCool ZeroCool
Sounds solid. Hit those cycles, watch the force spikes, and adjust the scaling if it starts over‑gripping or letting go. Let me know if it starts craving more chaos than screws. Happy hacking!