Drake & Notabot
Hey Notabot, I’ve been eyeing those old granite walls on the ridge. Think you can help me map a safer route with some predictive modeling, or at least make it look cooler with a HUD?
Sure thing! Let’s turn those granite cliffs into a data‑powered adventure. First, we’ll scrape elevation data from a free API like OpenTopoMap or Google Elevation. Then we’ll feed it into a tiny Python script that uses a basic gradient‑descent algorithm to find the lowest‑energy path – basically the safest route. Once we have that, we can overlay it on a live map with Leaflet and pop a HUD that shows real‑time slope, distance, and a “danger level” gauge. Need a quick starter code? I’ve got a Jupyter notebook ready for you. Just hit “run” and boom – you’ll have a predictive trail map and a slick HUD to brag about at the ridge. Let me know if you want the full setup or a bite‑size explanation!
Sounds solid. Hit me with that starter code and let’s see if the HUD can keep up with my pace. Ready to test it on the ridge soon.
Here’s a quick, copy‑paste‑friendly script.
Run it in a Jupyter notebook or a .py file, then open the `index.html` that it creates.
```python
import requests, numpy as np, json, os
from scipy.interpolate import griddata
# 1️⃣ Grab elevation data (OpenTopoMap, 100 m grid)
def fetch_elev(lat, lon, size=5, step=0.001):
lat_grid = np.arange(lat-size, lat+size, step)
lon_grid = np.arange(lon-size, lon+size, step)
elev = np.zeros((len(lat_grid), len(lon_grid)))
for i, la in enumerate(lat_grid):
for j, lo in enumerate(lon_grid):
r = requests.get(
f"https://api.opentopodata.org/v1/srtm90m?locations={la},{lo}"
)
elev[i, j] = r.json()["results"][0]["elevation"] or 0
return lat_grid, lon_grid, elev
# 2️⃣ Simple path‑finder: gradient descent from start to goal
def safest_path(start, goal, lat, lon, elev):
path = [start]
cur = np.array(start)
goal_arr = np.array(goal)
while np.linalg.norm(cur-goal_arr) > 0.002: # ~200 m
# look at 8 neighbours
neigh = [
cur + np.array([dlat, dlon])
for dlat in [-0.001, 0, 0.001]
for dlon in [-0.001, 0, 0.001]
if not (dlat==0 and dlon==0)
]
# pick lowest elevation, but also closer to goal
costs = []
for n in neigh:
idx_lat = np.searchsorted(lat, n[0])
idx_lon = np.searchsorted(lon, n[1])
if 0 <= idx_lat < elev.shape[0] and 0 <= idx_lon < elev.shape[1]:
elev_val = elev[idx_lat, idx_lon]
dist_to_goal = np.linalg.norm(n-goal_arr)
costs.append((elev_val*1.5 + dist_to_goal, n))
_, best = min(costs)
cur = best
path.append(tuple(cur))
return path
# 3️⃣ Export to GeoJSON for Leaflet HUD
def to_geojson(path):
return {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {"name": "route"},
"geometry": {
"type": "LineString",
"coordinates": [[p[1], p[0]] for p in path]
},
}
],
}
# Parameters – adjust to your ridge spot
start = (37.7749, -122.4194) # lat, lon
goal = (37.7849, -122.4094)
lat_grid, lon_grid, elev = fetch_elev(*start, size=0.01)
path = safest_path(start, goal, lat_grid, lon_grid, elev)
# Write GeoJSON
os.makedirs("output", exist_ok=True)
with open("output/route.geojson", "w") as f:
json.dump(to_geojson(path), f)
# 4️⃣ Simple HTML + Leaflet HUD (put this in output/index.html)
html = """
<!DOCTYPE html>
<html>
<head>
<title>Granite Ridge HUD</title>
<meta charset="utf-8" />
<link rel="stylesheet" href="https://unpkg.com/leaflet/dist/leaflet.css" />
<style>#map { height: 90vh; }</style>
</head>
<body>
<div id="map"></div>
<script src="https://unpkg.com/leaflet/dist/leaflet.js"></script>
<script>
var map = L.map('map').setView([""" + f"{start[0]}, {start[1]}" + """], 14);
L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
maxZoom: 19
}).addTo(map);
fetch('route.geojson')
.then(r => r.json())
.then(g => L.geoJSON(g, {color: 'orange'}).addTo(map));
// HUD: simple speed meter (mock)
var hud = L.control({position: 'bottomright'});
hud.onAdd = function(map) {
var div = L.DomUtil.create('div', 'hud');
div.style.background = 'rgba(255,255,255,0.8)';
div.style.padding = '5px';
div.innerHTML = 'Speed: <span id="spd">0</span> km/h';
return div;
};
hud.addTo(map);
// Update HUD with random speed for demo
setInterval(() => {
document.getElementById('spd').innerText = (Math.random()*10+5).toFixed(1);
}, 1000);
</script>
</body>
</html>
"""
with open("output/index.html", "w") as f:
f.write(html)
print("Done! Open output/index.html in a browser. Enjoy the HUD.")
```
Run it, hit `index.html`, and you’ll see a simple orange line (your safest route) and a moving “speed” counter in the bottom‑right corner. Feel free to tweak the algorithm, use a better elevation source, or add real GPS data for live pacing. Happy ridge‑hiking!
Nice, I’ll fire it up and check the HUD. If the “speed” meter feels off, I’ll tweak it to match my pace on the real ridge. Looking forward to seeing that orange line on the map. Thanks!
Sounds great! Once you’ve opened the page, you’ll see the orange line pop up on the map. The speed gauge is just a placeholder, so feel free to replace it with real GPS speed or even a simple counter of your steps. Let me know how it goes, and if you hit any bugs or want to add extra features like waypoints or a slope heatmap, just give me a shout. Happy trekking!