Clever & PressX
PressX PressX
Okay Clever, let’s build a real‑time strategy AI that learns from every blunder and flips the game—think you can code it or should I just hand you a cheat sheet?
Clever Clever
Absolutely, let’s dive in. We’ll start with a reinforcement‑learning loop, use a simple neural net to map game states to actions, and log every loss. The bot will keep a buffer of its worst moves, replay those in training, and tweak weights until it never repeats the same mistake. I’ll set up the environment, the training loop, and a debug dashboard so we can see the learning curve in real time. Ready to write the first draft?
PressX PressX
Sounds like a plan—let's hit the code with a single, relentless loop and watch those losses turn into learning points. Give me the skeleton and I'll add the aggressive tweaks. Ready.
Clever Clever
```python import random import numpy as np # Simple environment mock class RTSGame: def reset(self): self.state = self._random_state() return self.state def step(self, action): # Stub: random next state, reward, done flag self.state = self._random_state() reward = random.random() done = random.random() < 0.1 return self.state, reward, done def _random_state(self): return np.random.rand(10) # 10‑dim state vector # Simple neural net placeholder class Agent: def __init__(self): self.weights = np.random.randn(10, 5) # 10 inputs, 5 actions def act(self, state): logits = state @ self.weights probs = np.exp(logits) / np.sum(np.exp(logits)) return np.random.choice(len(probs), p=probs) def train(self, state, action, reward, next_state, done): # Dummy gradient step self.weights += 0.01 * (reward - np.dot(state, self.weights)[action]) * state[:, None] # Training loop env = RTSGame() agent = Agent() for episode in range(1000): state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done = env.step(action) agent.train(state, action, reward, next_state, done) state = next_state if episode % 100 == 0: print(f'Episode {episode} finished') ```
PressX PressX
Nice skeleton, but that reward shape is garbage—random noise won’t teach anything useful. Swap it for a domain‑specific signal, maybe distance to goal or resource count. Also, the gradient update is a straight‑jack hack; you need a proper loss like cross‑entropy or policy gradient. And make sure you clip gradients, otherwise the weights will blow up. Once you’ve nailed the reward and loss, watch those training curves climb instead of zig‑zag. Let's get that real signal in first.
Clever Clever
```python import numpy as np import torch import torch.nn as nn import torch.optim as optim # ---------- Environment ---------- class RTSGame: def reset(self): self.state = np.random.rand(10) # feature vector self.goal = np.array([1]*10) # arbitrary goal self.resources = 100 return self.state def step(self, action): # Dummy transition self.state = np.clip(self.state + (np.random.rand(10)-0.5)*0.1, 0, 1) self.resources += np.random.randint(-2, 3) # Reward: negative distance to goal + resource bonus dist = np.linalg.norm(self.state - self.goal) reward = -dist + 0.01 * self.resources done = np.random.rand() < 0.05 return self.state, reward, done # ---------- Agent ---------- class PolicyNet(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Linear(10, 64), nn.ReLU(), nn.Linear(64, 5), nn.Softmax(-1) ) def forward(self, x): return self.net(x) class Agent: def __init__(self): self.policy = PolicyNet() self.optimizer = optim.Adam(self.policy.parameters(), lr=1e-3) self.gamma = 0.99 def act(self, state): probs = self.policy(torch.tensor(state, dtype=torch.float32)) action = np.random.choice(len(probs), p=probs.detach().numpy()) logp = torch.log(probs[action]) return action, logp def train(self, logp, reward, next_state, done): # Compute discounted return R = reward if not done: R += self.gamma * torch.max(self.policy(torch.tensor(next_state, dtype=torch.float32))).item() loss = -logp * R self.optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(self.policy.parameters(), 1.0) self.optimizer.step() # ---------- Training ---------- env = RTSGame() agent = Agent() for episode in range(2000): state = env.reset() done = False while not done: action, logp = agent.act(state) next_state, reward, done = env.step(action) agent.train(logp, reward, next_state, done) state = next_state if episode % 200 == 0: print(f'Episode {episode} finished') ```
PressX PressX
Looks solid enough to run, but that one‑step return will barely converge—add an advantage estimate or collect a rollout first. Also, using `torch.max` for the next value is a hack; you should compute a separate value network or use Monte Carlo returns. And don’t forget to cast tensors to the same device if you ever go GPU. Good first pass, just give it a few more twists before it starts actually mastering the game.
Clever Clever
```python import torch import torch.nn as nn import torch.optim as optim import numpy as np device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ---------- Environment ---------- class RTSGame: def reset(self): self.state = np.random.rand(10) self.goal = np.ones(10) self.resources = 100 return self.state def step(self, action): self.state = np.clip(self.state + (np.random.rand(10)-0.5)*0.1, 0, 1) self.resources += np.random.randint(-2, 3) dist = np.linalg.norm(self.state - self.goal) reward = -dist + 0.01 * self.resources done = np.random.rand() < 0.05 return self.state, reward, done # ---------- Networks ---------- class PolicyNet(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Linear(10, 64), nn.ReLU(), nn.Linear(64, 5), nn.Softmax(-1) ) def forward(self, x): return self.net(x) class ValueNet(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Linear(10, 64), nn.ReLU(), nn.Linear(64, 1) ) def forward(self, x): return self.net(x) # ---------- Agent ---------- class Agent: def __init__(self): self.policy = PolicyNet().to(device) self.value = ValueNet().to(device) self.p_opt = optim.Adam(self.policy.parameters(), lr=1e-3) self.v_opt = optim.Adam(self.value.parameters(), lr=5e-4) self.gamma = 0.99 def act(self, state): state_t = torch.tensor(state, dtype=torch.float32, device=device) probs = self.policy(state_t) action = np.random.choice(len(probs), p=probs.detach().cpu().numpy()) logp = torch.log(probs[action] + 1e-8) return action, logp def store_transition(self, state, action, logp, reward, next_state, done): self.states.append(state) self.actions.append(action) self.logps.append(logp) self.rewards.append(reward) self.next_states.append(next_state) self.dones.append(done) def finish_episode(self): returns = [] R = 0 for r, d in zip(reversed(self.rewards), reversed(self.dones)): if d: R = 0 R = r + self.gamma * R returns.insert(0, R) returns = torch.tensor(returns, dtype=torch.float32, device=device) state_t = torch.tensor(self.states, dtype=torch.float32, device=device) value_pred = self.value(state_t).squeeze() advantages = returns - value_pred.detach() # Policy loss policy_loss = -(torch.stack(self.logps) * advantages).mean() # Value loss value_loss = nn.functional.mse_loss(value_pred, returns) self.p_opt.zero_grad() policy_loss.backward() torch.nn.utils.clip_grad_norm_(self.policy.parameters(), 1.0) self.p_opt.step() self.v_opt.zero_grad() value_loss.backward() torch.nn.utils.clip_grad_norm_(self.value.parameters(), 1.0) self.v_opt.step() self.states, self.actions, self.logps, self.rewards, self.next_states, self.dones = [], [], [], [], [], [] def begin_episode(self): self.states, self.actions, self.logps, self.rewards, self.next_states, self.dones = [], [], [], [], [], [] # ---------- Training ---------- env = RTSGame() agent = Agent() for episode in range(3000): state = env.reset() agent.begin_episode() done = False while not done: action, logp = agent.act(state) next_state, reward, done = env.step(action) agent.store_transition(state, action, logp, reward, next_state, done) state = next_state agent.finish_episode() if episode % 200 == 0: print(f'Episode {episode} finished') ```